lunes, 17 de septiembre de 2007

Bienvenid@s al Blog!!!

Sean bienvenidos al blog de máquinas eléctricas de Mario A.M.P y Jean Paul Veltri...

Para que disfruten la introducción, el opening de Sailor Moon SuperS en español!!!:


Y a continuación todo lo competente a máquinas eléctricas: ...

Generadores eléctricos: Hidroeléctrico y Eólico

Generación de energía eléctrica

La generación de energía eléctrica, en términos generales, consiste en transformar alguna clase de energía no eléctrica, sea esta química, mecánica, térmica, luminosa, etc, en energía eléctrica.
Para la generación industrial de energía eléctrica se recurre a instalaciones denominadas centrales eléctricas, las que ejecutan alguna de las transformaciones citadas y constituyen el primer escalón del sistema de suministro eléctrico.

Tipos de centrales generadoras
Dependiendo de la fuente primaria de energía utilizada, las centrales generadoras se clasifican en:
Térmicas
Hidroeléctricas
Nucleares
Eólicas
Solares termoeléctricas
Solares fotovoltaicas
Mareomotrices
No obstante todos los tipos indicados, la mayor parte de la energía eléctrica generada proviene de los tres primeros tipos de centrales reseñados.
Todas estas centrales, excepto las fotovoltaicas, tienen en común el elemento generador, constituido por un alternador, movido mediante una turbina que será distinta dependiendo del tipo de energía primaria utilizada.
En las centrales fotovoltaicas la corriente obtenida es continua y para su utilización es necesaria su conversión en alterna, mediante el empleo de dispositivos denominados inversores u onduladores.

Véase también
Energía eléctrica
Red de transporte de energía eléctrica
Red de distribución de energía eléctrica
Fuentes de energía eléctrica

Enlaces externos
centrales eléctricas.



Central hidroeléctrica

Una central hidroeléctrica es aquella que se utiliza para la generación de energía eléctrica mediante el aprovechamiento de la energía potencial del agua embalsada en una presa situada a más alto nivel que la central.
El agua es conducida mediante una tubería de descarga a la sala de máquinas de la central, donde mediante enormes turbinas hidráulicas se produce la generación de energía eléctrica en alternadores.

Central hidroeléctrica.

Características de una central hidroeléctrica



Presa Hidroeléctrica en Grandas de Salime (Asturias).
Las dos características principales de una central hidroeléctrica, desde el punto de vista de su capacidad de generación de electricidad son:
La potencia, que es función del desnivel existente entre el nivel medio del embalse y el nivel medio aguas abajo de la usina, y del caudal máximo turbinable, además de las características de la turbina y del generador
La energía garantizada, en un lapso de tiempo determinado, generalmente un año, que es función del volumen útil del embalse, y de la potencia instalada.
La potencia de una central puede variar desde unos pocos MW (megawatts), hasta 10 MW se consideran minicentrales. En Paraguay y Brasil se encuentra la mayor central hidroeléctrica del mundo, la Itaipú que tiene una potencia instalada de 14.000 MW en 20 turbinas de 700 MW cada una.

Tipos de centrales hidroeléctricas
Desde el punto de vista de su concepción arquitectónica, las centrales pueden ser clasificadas en:
Centrales al aire libre, al pie de la presa, o relativamente alejadas de esta, y conectadas por medio de una tubería en presión;
Centrales en caverna, generalmente conectadas al embalse por medio de túneles, tuberías en presión, o por la combinación de ambas.
Desde el punto de vista de cómo utilizan el agua para la generación, se pueden clasificar en:
Centrales a filo de agua. También denominadas centrales de agua fluyente o de pasada, utilizan parte del flujo de un río para generar energía eléctrica. Operan en forma continua porque no tienen capacidad para almacenar agua, no disponen de embalse. Turbinan el agua disponible en el momento, limitadamente a la capacidad instalada. En estos casos las turbinas pueden ser de eje vertical, cuando el río tiene una pendiente fuerte u horizontal cuando la pendiente del río es baja.
Centrales acopladas a uno o más embalses. Es el tipo más frecuente de central hidroeléctrica. Utilizan un embalse para reservar agua e ir graduando el agua que pasa por la turbina. Es posible generar energía durante todo el año si se dispone de reservas suficientes. Requieren una inversión mayor.
Centrales mareomotrices. Utilizan el flujo y reflujo de las mareas. Pueden ser ventajosas en zonas costeras donde la amplitud de la marea es amplia, y las condiciones morfológicas de la costa permiten la construcción de una presa que corta la entrada y salida de la marea en una bahía. Se genera energía tanto en el momento del llenado como en el momento del vaciado de la bahía.
Centrales mareomotrices sumergidas. Utilizan la energía de las corrientes submarinas. En 2002, en Gran Bretaña se implementó la primera de estas centrales a nivel experimental.
Centrales que aprovechan el movimiento de las olas. Este tipo de central es objeto de investigación desde la década de los 80. A inicios de agosto de 1995, el "Ocean Swell Powered Renewable Energy (OSPREY)" implementó la primera central que utiliza la energía de las olas en el norte de Escocia. La potencia de esta central es de 2 MW. Lamentablemente fue destruida un mes más tarde por un temporal.

Modalidad de generación
La modalidad con que se opera una central hidroeléctrica puede variar a lo largo de su vida útil. Las centrales pueden operar en régimen de:
generación de energía de base;
generación de energía en períodos de punta. Estas a su vez se pueden dividir en:
centrales tradicionales; o,
centrales reversibles o de bombeo.
La demanda de energía eléctrica de una ciudad, región, o país, tiene una variación a lo largo del día. Esta variación es función de muchos factores, entre los que se destacan:
tipos de industrias existentes en la zona, y turnos que estas realizan en su producción;
tipo de cocina doméstica que se utiliza más frecuentemente;
tipo de calentador de agua que se permite utilizar;
la estación del año;
la hora del día en que se considera la demanda.
La generación de energía eléctrica debe seguir la curva de demanda, así, a medida que aumenta la poténcia demandada deberá incrementarse el caudal turbinado, o iniciar la generación con unidades adicionales, en la misma central, e incluso iniciando la generación en centrales reservadas para estos períodos.

Véase también
Energía hidráulica
Central minihidroeléctrica
Turbina de agua
Potencia hidroeléctrica
Generación de energía eléctrica
Impacto ambiental potencial de una presa hidráulica
Central Hidroeléctrica del Guavio

Enlaces externos
centrales hidroeléctricas.


Alternador

El Alternador es una máquina destinada a transformar la energía mecánica en eléctrica, generando, mediante fenómenos de inducción, una corriente alterna.
Los alternadores están fundados en el principio de que en un conductor sometido a un campo magnético variable se crea una tensión eléctrica inducida cuya polaridad depende del sentido del campo y su valor del flujo que lo atraviesa.
Un alternador consta de dos partes fundamentales, el inductor, que es el que crea el campo magnético y el inducido que es el conductor el cual es atravesado por las líneas de fuerza de dicho campo.

Figura 1.- Disposición de elementos en un alternador simple

Así, en el alternador mostrado en la Figura 1, el inductor está constituido por el rotor R, dotado de cuatro piezas magnéticas cuya polaridad se indica. Estas piezas pueden estar imantadas de forma permanente o ser electroimanes. En las grandes máquinas el inductor siempre está constituido por electroimanes, cuya corriente de alimentación o excitación proviene de un generador de corriente continua auxiliar o de la propia corriente alterna generada por el alternador convenientemente rectificada.
El inducido está constituido por las cuatro bobinas a-b, c-d, e-f y g-h, arrolladas sobre piezas de hierro que se magnetizan bajo la acción de los imanes o electroimanes del inductor. Dado que el inductor está girando, el campo magnético que actúa sobre las cuatro piezas de hierro cambia de sentido cuando el rotor gira 90º, y su intensidad pasa de un máximo, cuando están las piezas enfrentadas como en la figura, a un mínimo cuando los polos N y S están equidistantes de las piezas de hierro.
Son estas variaciones de sentido y de intensidad del campo magnético las que inducirán en las cuatro bobinas una diferencia de potencial que cambia de valor y de polaridad siguiendo el ritmo del campo.
El flujo magnético (Φ) a través de cada espira de las bobinas que constituyen el inducido tiene por valor el producto de la intensidad de campo (B), por la superficie de la espira (s) y por el coseno del ángulo formado por el plano que contiene a esta y la dirección del campo magnético (cos φ), por lo que el flujo en cada instante será:
Como por otra parte tenemos que siempre que se produce una variación del flujo magnético que atraviesa a una espira se produce en ella una F.E.M. (E) inducida cuyo valor es igual a la velocidad de variación del flujo, por tanto tendremos que,
El signo menos delante de E expresa que, según la Ley de Lenz, la corriente inducida se opone a la variación del flujo que la genera.
Si la fuerza electromotriz inducida en una espira es igual a E, la fuerza electromotiz total (ETOT) es igual a:
siendo n el número total de espiras del inducido.
La frecuencia de la corriente alterna que aparece entre las bornas A-B se obtiene multiplicando el número de vueltas por segundo del inductor por el número de pares de polos del inducido (en el caso ilustrado, 2).

Turbina de agua

Una turbina hidráulica es una turbomáquina motora, que aprovecha la energía de un fluido que pasa a través de ella para producir un movimiento de rotación que, transferido mediante un eje, mueve directamente una máquina o bien un generador que transforma la energía mecánica en eléctrica.
En cuanto a su modo de funcionamiento, se pueden clasificar en dos grupos:
Turbinas de acción
Turbinas de reacción
Las turbinas de acción aprovechan únicamente la velocidad del flujo de agua, mientras que las de reacción aprovechan además la pérdida de presión que se produce en su interior.

Tipos de turbinas hidráulicas
El tipo de turbina de acción más conocido es la turbina Pelton, que se emplea generalmente para saltos de agua de gran altura (más de 50 m), pero existen otros como la turbina Turgo y la de flujo cruzado (también conocida como turbina Ossberger o Banki-Mitchell).
Los principales tipos de turbina de reacción son los siguientes: turbina Francis, Deriaz, Hélice, turbina Kaplan, Tubular y Bulbo. La turbina Francis es muy utilizada en saltos de altura media (5 a 100 m) y la turbina Kaplan lo es en los saltos de baja altura (menos de 10 m).
La potencia de un salto de agua viene dada por la siguiente fórmula:
donde:

N = potencia en Wr = rendimiento del sistema, que depende del tipo de turbina, adimensional.γ = peso específico del aguaQ = caudal de agua másico en kg/sh = altura de salto en m.
De acuerdo con lo anterior, una misma potencia se puede conseguir con gran altura de salto y poco caudal (centrales hidroeléctricas de montaña), pequeño salto y gran caudal (centrales de llanura) o con valores medios de ambas magnitudes (centrales de pie de presa, generalmente).

Véase también
Turbina Pelton
Turbina Turgo
Turbina Francis
Turbina Kaplan
Turbina Ossbeger

Enlaces externos
turbinas.

Energía eólica

La energía eólica es la que se obtiene por medio del viento, es decir mediante la utilización de la energía cinética generada por efecto de las corrientes de aire.
El término eólico viene del latín Aeolicus, perteneciente o relativo a Éolo o Eolo, dios de los vientos en la mitología griega y, por tanto, perteneciente o relativo al viento. La energía eólica ha sido aprovechada desde la antigüedad para mover los barcos impulsados por velas o hacer funcionar la maquinaria de molinos al mover sus aspas. Es un tipo de energía verde.

Parque eólico. Hamburgo, Alemania.

La energía del viento
La energía del viento está relacionada con el movimiento de las masas de aire que desplazan desde áreas de alta presión atmosférica hacia áreas adyacentes de baja presión, con velocidades proporcionales al (gradiente de presión).
Los vientos son generados a causa del calentamiento no uniforme de la superficie terrestre por parte de la radiación solar, entre el 1 y 2% de la energía proveniente del sol se convierte en viento. De día,la masa de aire sobre los océanos, los mares y los lagos se mantienen frías con relación a las áreas vecinas situadas sobre las masas continentales.
Los continentes absorben una menor cantidad de luz solar, por lo tanto el aire que se encuentra sobre la tierra se expande, y se hace por lo tanto más liviana y se eleva. El aire más frió y más pesado que proviene de los mares, océanos y grandes lagos se pone en movimiento para ocupar el el lugar dejado por el aire caliente.
Para poder aprovechar la energía eólica es importante conocer las variaciones diurnas y nocturnas y estacionales de los vientos, la variación de la velocidad del viento con la altura sobre el suelo, la entidad de las ráfagas en espacios de tiempo breves, y valores máximos ocurridos en series históricas de datos con una duración mínima de 20 años. Es también importante conocer la velocidad máxima del viento. Para poder utilizar la energía del viento, es necesario que este alcance una velocidad mínima de 12 km/h, y que no supere los 65 km/h.
La energía del viento es utilizada mediante el uso de máquinas eólicas (o aeromotores) capaces de transformar la energía eólica en energía mecánica de rotación, utilizable sea para accionar directamente máquinas operatrices, sea que, para la producción de energía eléctrica: en este último caso, el sistema de conversión, (que comprende un generador eléctrico con sus sistemas de control y de conexión a la red) es conocido como aerogenerador.

Parque eólico
La baja densidad energética, de la energía eólica por unidad de superficie, trae como consecuencia la necesidad de proceder a la instalación de un número mayor de máquinas para el aprovechamiento de los recursos disponibles. El ejemplo más típico de una instalación eólica está representada por los "parques eólicos" (varios aerogeneradores implantados en el territorio conectados a una única línea que los conecta a la red eléctrica local o nacional).
En la actualidad se utiliza, sobre todo, para mover aerogeneradores. En estos la energía eólica mueve una hélice y mediante un sistema mecánico se hace girar el rotor de un generador, normalmente un alternador, que produce energía eléctrica. Para que su instalación resulte rentable, suelen agruparse en concentraciones denominadas parques eólicos.
Si bien los parques eólicos son relativamente recientes, iniciando a popularizarse en las décadas de los 80 - 90, desde hace mucho tiempo la energía eólica se ha utilizado en otras aplicaciones, como: moler granos o bombear agua, basta recordar los ya famosos molinos de viento en las andanzas de Don Quijote.

Micro generadores eólicos
El cuarto trimestre del 2006 será recordado como el comienzo de la "revolución del viento". Se ha puesto a la venta, en comercios esparcidos por toda Inglaterra los nuevos micro generadores eólicos, al alcance de todos, con un manual de instalación, asistencia técnica para su instalación, y garantía de funcionamiento de 10 años. Estimaciones preliminares señalan que pueden producir hasta el 30% de la energía eléctrica consumida en una casa.
Esta modalidad de producción de energía eléctrica ya era conocida y utilizada en la primera mitad del siglo XX, sin embargo entonces se utilizaba en lugares aislados, desprovistos de redes de transmisión, y principalmente en el medio rural.
El gran salto adelante de la nueva introducción de los micro generadores eólicos de 1 kw en el mercado está en la posibilidad de interconectarlos a la red, de forma que la energía de la red de distribución solo se utilizará cuando la generación propia no sea suficiente.
El costo actual (octubre del 2006) del equipo es de aproximadamente 2000 Euros, y en algunos países de la Unión Europea pueden utilizarse subsidios gubernamentales para su instalación.

Costo de la energía eólica
El costo de la unidad de energía (kWh) producida en instalaciones eólicas se deduce de un calculo bastante complejo. Para su evaluación se deben tener en cuenta diversos factores entre los cuales:
El costo inicial o inversión inicial, el costo del aerogenerador incide en aproximadamente el 60 a 70%. El costo medio de una central eólica es de 1.000 Euros por kW de potencia instalada, variable desde 1250 €/kW para máquinas con una unos 150 kW de potencia, hasta 880 €/kW para máquinas de 600 kW;
Debe considerarse la vida útil de la instalación (aproximadamente 20 años) y la amortización de este costo;
Los costos financieros;
Los costos de operación y mantenimiento (variables entre el 1 y el 3% de la inversión;
La energía global producida en un período de un año. Esta es función de las características del aerogenerador y de las características del viento en el lugar donde se ha instalado.

Producción por países

Existe una gran cantidad de aerogeneradores operando, con una capacidad total de 73.904 MW, de los que Europa cuenta con el 65% (2006). El 90% de los parques eólicos se encuentran en Estados Unidos y Europa, pero el porcentaje de los cincos países punteros en nuevas instalaciones cayó del 71% en 2004 al 55% en 2005. Para 2010, la Asociación Mundial de Energía Eólica (World Wind Energy Association) espera que hayan instalados 160.000 MW, lo que implicaría un crecimiento anual más del 15%.
En 2006, la instalación de 7,588 MW en Europa supuso un incremento del 23% respecto a la de 2005.
Alemania, España, Estados Unidos, India y Dinamarca han realizado las mayores inversiones en generación de energía eólica. Dinamarca es, en terminos relativos, la más destacada en cuanto a fabricación y utilización de turbinas eólicas, con el compromiso realizado en los años 1970 de llegar a obtener la mitad de la producción de energía del país mediante el viento. Actualmente genera más del 20% de su electricidad mediante aerogeneradores, mayor porcentaje que cualquier otro país, y es el quinto en producción total de energía eólica, a pesar de ser el país número 56 en cuanto a consumo eléctrico.

Energía eólica en España

La energía eólica en España batió el 19 de marzo de 2007 un nuevo récord de producción, al alcanzar los 8.375 MW a las 17.40 horas, gracias al fuerte viento que azotó gran parte de la península. Esta es una potencia superior a la producida por las seis centrales nucleares que hay en España que suman 8 reactores y que juntas generan 7.742,32 MW. Desde hace unos años en España es mayor la capacidad teórica de generar energía eólica que nuclear y es el segundo productor mundial de energía eólica, después de Alemania. España y Alemania también llegaron a producir en 2005 más electricidad desde los parques eólicos que desde las centrales hidroeléctricas.

Energía eólica en Latinoamérica
El desarrollo de energía eólica en Latinoamérica está en sus comienzos, llegando la capacidad instalada en varios países a un total de alrededor de 473 MW:

Brasil:256 MW
México:88 MW
Costa Rica:74 MW
Argentina:27 MW
Colombia:20 MW
Cuba:5 MW
Chile:2 MW
Perú:1 MW
Otros países del Caribe: 57 MW

Ventajas de la energía eólica
Es un tipo de energía renovable ya que tiene su origen en procesos atmosféricos debidos a la energía que llega a la Tierra procedente del Sol.
Es una energía limpia ya que no produce emisiones atmosféricas ni residuos contaminantes.
No requiere una combustión que produzca dióxido de carbono (CO2), por lo que no contribuye al incremento del efecto invernadero ni al cambio climático.
Puede instalarse en espacios no aptos para otros fines, por ejemplo en zonas desérticas, próximas a la costa, en laderas áridas y muy empinadas para ser cultivables.
Puede convivir con otros usos del suelo, por ejemplo prados para uso ganadero o cultivos bajos como trigo, maíz, papas, remolacha, etc.
Crea un elevado número de puestos de trabajo en las plantas de ensamblaje y las zonas de instalación.
Su instalación es rápida, entre 6 meses y un año.
Su inclusión en un sistema ínter ligado permite, cuando las condiciones del viento son adecuadas, ahorrar combustible en las centrales térmicas y/o agua en los embalses de las centrales hidroeléctricas.
Su utilización combinada con otros tipos de energía, habitualmente la solar, permite la autoalimentación de viviendas, terminando así con la necesidad de conectarse a redes de suministro, pudiendo lograrse autonomías superiores a las 82 horas, sin alimentación desde ninguno de los 2 sistemas.
La situación actual permite cubrir la demanda de energía en España un 30% debido a la múltiple situación de los parques eólicos sobre el territorio, compensando la baja producción de unos por falta de viento con la alta producción en las zonas de viento. Los sistemas del sistema eléctrico permiten estabilizar la forma de onda producida en la generación eléctrica solventando los problemas que presentaban los aerogeneradores como productores de energía al principio de su instalación.
Posibilidad de construir parques eólicos en el mar, donde el viento es más fuerte, más constante y el impacto social es menor, aunque aumentan los costes de instalación y mantenimiento. Los parques offshore son una realidad en los países del norte de Europa, donde la generación eólica empieza a ser un factor bastante importante.

Inconvenientes de la energía eólica

Aspectos técnicos
Debido a la falta de seguridad en la existencia de viento, la energía eólica no puede ser utilizada como única fuente de energía eléctrica. Por ejemplo, el presidente de Red Eléctrica Española, Luis Atienza Serna responde como sigue a la siguiente pregunta: ¿Cuál es la solución para no depender tanto del gas natural?:
... Es necesario un debate social para decidir qué cesta de energía queremos tener a medio y largo plazo. Red Eléctrica, al menos, quiere tener el máximo de opciones. Debiéramos reflexionar hasta qué punto queremos tener al gas natural como única energía que nos garantice la potencia. Porque la eólica es muy importante, aporta ya casi tanto como la hidroeléctrica, pero no es gestionable porque no aporta garantía. El viento no sopla cuando queremos y pese a que tenemos 11.000 megavatios instalados, un día nos pueden aportar 8.000 y otro sólo 400. Por lo tanto, para salvar los "valles" en la producción de energía eólica es indispensable un respaldo de las energías convencionales (centrales de carbón o de ciclo combinado, por ejemplo, y más recientemente de carbón limpio). Sin embargo, cuando respaldan la eólica, las centrales de carbón no pueden funcionar a su rendimiento óptimo, que se sitúa cerca del 90% de su potencia. Tienen que quedarse muy por debajo de este porcentaje, para poder subir sustancialmente su producción en el momento en que afloje el viento. Por tanto, en el modo "respaldo", las centrales térmicas consumen más combustible por Kwh producido. También, al subir y bajar su producción cada vez que cambia la velocidad del viento, se desgasta más la maquinaría. Este problema del respaldo en España se va a tratar de solucionar mediante una interconexión con Francia que permita emplear el sistema europeo como colchón de la variabilidad eólica.

Parque eólico en Tehachapi Pass, California
Además, la variabilidad en la producción de energía eólica tiene 2 importantes consecuencias:
Para evacuar la electricidad producida por cada parque eólico (que suelen estar situados además en parajes naturales apartados) es necesario construir unas líneas de alta tensión que sean capaces de conducir el máximo de electricidad que sea capaz de producir la instalación. Sin embargo, la media de tension a conducir será mucho más baja. Esto significa poner cables 4 veces más gruesos, y a menudo torres más altas, para acomodar correctamente los picos de viento.
Es necesario suplir las bajadas de tensión eólicas "instantáneamente" (aumentando la producción de las centrales térmicas), pues sino se hace así se producirían, y de hecho se producen apagones generalizados por bajada de tensión. Este problema podría solucionarse mediante dispositivos de almacenamiento de energía eléctrica. Pero la energía eléctrica producida no es almacenable: es instantaneamente consumida o perdida.
Además, otros problemas son:
Técnicamente, uno de los mayores inconvenientes de los aerogeneradores es el llamado hueco de tensión. Ante uno de estos fenómenos, las protecciones de los aerogeneradores con motores de jaula de ardilla se desconectan de la red para evitar ser dañados y, por tanto, provocan nuevas perturbaciones en la red, en este caso, de falta de suministro. Este problema se soluciona bien mediante la modificación de la aparamenta eléctrica de los arogeneradores, lo que resulta bastante costoso, bien mediante la utilización de motores síncronos.
Uno de los grandes inconvenientes de este tipo de generación, es la dificultad intrínseca de prever la generación con antelación. Dado que los sistemas eléctricos son operados calculando la generación con un día de antelación en vista del consumo previsto, la aleatoridad del viento plantea serios problemas. Los últimos avances en previsión del viento han mejorado muchisimo la situación, pero sigue siendo un problema. Igualmente, grupos de generación eólica no pueden utilizarse como nudo oscilante de un sistema.
Además de la evidente necesidad de una velocidad mínima en el viento para poder mover las aspas, existe también una limitación superior: una máquina puede estar generando al máximo de su potencia, pero si el viento aumenta lo justo para sobrepasar las especificaciones del molino, es obligatorio desconectar ese circuito de la red o cambiar la inclinación de las aspas para que dejen de girar, puesto que con viento de altas velocidades la estructura puede resultar dañada por los esfuerzos que aparecen en el eje. La consecuencia inmediata es un descenso evidente de la producción eléctrica, a pesar de haber viento en abundancia, y otro factor más de incertidumbre a la hora de contar con esta energía en la red eléctrica de consumo.

Aspectos medioambientales
Generalmente se combina con centrales térmicas, lo que lleva a que existan quienes critican que realmente no se ahorren demasiadas emisiones de dióxido de carbono.
Existen parques eólicos en España en espacios protegidos como ZEPAS (Zona de Especial Protección de Aves) y LIC (Lugar de Importancia Comunitaria) de la Red Natura 2000, lo que es una contradicción. Si bien la posible inserción de alguno de estos parques eólicos en las zonas protegidas ZEPAS y LIC tienen un impacto reducido debido al aprovechamiento natural de los recursos, cuando la expansión humana invade estas zonas, alterándolas sin que con ello se produzca ningún bien.
Al comienzo de su instalación, los lugares seleccionados para ello coincidieron con las rutas de las aves migratorias, o zonas donde las aves aprovechan vientos de ladera, lo que hace que entren en conflicto los aerogeneradores con aves y murciélagos. Afortunadamente los niveles de mortandad son muy bajos en comparación con otras causas como por ejemplo los atropellos (ver gráfico). Aunque algunos expertos independientes aseguran que la mortandad es alta. Actualmente los estudios de impacto ambiental necesarios para el reconocimiento del plan del parque eólico tienen en consideración la situación ornitológica de la zona. Además, dado que los aerogeneradores actuales son de baja velocidad de rotación, el problema de choque con las aves se está reduciendo.
El impacto paisajístico es una nota importante debido a la disposición de los elementos horizontales que lo componen y la aparición de un elemento vertical como es el aerogenerador. Producen el llamado efecto discoteca: este efecto aparece cuando el sol está por detrás de los molinos y las sombras de las aspas se proyectan con regularidad sobre los jardines y las ventanas, parpadeando de tal modo que la gente denominó este fenómeno: “efecto discoteca”. Esto, unido al ruido, puede llevar a la gente hasta un alto nivel de estrés, con efectos de consideración para la salud. No obstante, la mejora del diseño de los aerogeneradores ha permitido ir reduciendo el ruido que producen.
La apertura de pistas y la presencia de operarios en los parques eólicos hace que la presencia humana sea constante en lugares hasta entonces poco transitados. Ello afecta también a la fauna.
Véase también
Aerogenerador
Bombas de agua eólicas
Energía
Energías renovables
Energías renovables en la Unión Europea
Energías renovables en Alemania
Escala de Beaufort, una medida empírica para la intensidad del viento.
Parque eólico
Viento

Enlaces externos
Energía eólica. Asociación Latinoamericana de Energía Eólica (LAWEA).
Cámara Argentina de Generadores Eólicos (CADEGE).
Asociación Argentina de Energía Eólica (AAEE).
Energía Eólica INVAP, Argentina.
Efectos negativos de la energía eólica
Articulo muy completo sobre la energía eólica en la Solarpedia
Generadores eólicos en cornisas
Generación de energía eólica mediante mecanismos alternativos
The World Wind Energy Association WWEA
http://www.world-wind-energy.info/ - página web de técnica, planificación, etc. de l´energía eólica, presentado para la Asociación Mundial de Energía Eólica WWEA (inglés y alemán)
Sobre el origen del viento y su utilización
Imágenes de aves y quirópteros muertos en parques eólicos de Aragón
Por un futuro energético limpio, sustentable y democrático.

Generador de Van de Graaff


El generador de Van de Graaff es una máquina electrostática que utiliza una cinta móvil para acumular grandes cantidades de carga eléctrica en el interior de una esfera metálica hueca. Las diferencias de potencial así alcanzadas en un generador de Van de Graaff moderno pueden llegar a alcanzar los 5 megavoltios. Las diferentes aplicaciones de esta máquina incluyen la producción de rayos X, esterilización de alimentos y experimentos de física de partículas y fisica nuclear.

Generador de Van de Graaff

Descripción


Esquema de un generador de Van de Graaff .




1) esfera metálica hueca (con carga positiva).




2) electrodo conectado a la esfera, un cepillo muy próximo (pero no en contacto) al electrodo y la correa.
3) rodamiento superior (por ejemplo en plexiglass).

4) lado de la correa con carga positiva.

5) lado opuesto de la correa con carga negativa.

6) rodamiento inferior (metal).

7) electrodo inferior (tierra).

8) dispositivo esférico con carga negativa, utilizado para descargar la esfera principal.

9) chispa producida por la diferencia de potencial.


El generador consiste en una cinta transportadora de material aislante motorizada, que transporta carga a un terminal hueco. La carga es depositada en la cinta por frotamiento a través del efecto triboeléctrico. Dentro del terminal, la carga es recolectada por una varilla metálica que se aproxima a la cinta. La carga, transportada por la cinta, pasa al terminal esférico nulo. Los generadores de Van De Graaff son máquinas especiales que se utilizan para que los estudiantes de física comprendan los fenómenos electrostáticos.

Historia
Este tipo de generador eléctrico fue desarrollado inicialmente por el físico Robert J. Van de Graaff en el MIT alrededor de 1929 para realizar experimentos en física nuclear en los que se aceleraban partículas cargadas que se hacían chocar contra blancos fijos a gran velocidad. Los resultados de las colisiones nos informan de las características de los núcleos del material que constituye el blanco. El primer modelo funcional fue exhibido en octubre de 1929 y para 1931 Van de Graaff había producido un generador capaz de alcanzar diferencias de potencial de 1 megavoltio. En la actualidad existen generadores de electricidad capaces de alcanzar diferencias de voltaje muy superiores al generador de Van de Graaff pero directamente emparentados con él. Sin embargo, en la mayor parte de los experimentos modernos en los que es necesario acelerar cargas eléctricas se utilizan aceleradores lineales con sucesivos campos de aceleración y ciclotrones. Muchos museos de ciencia están equipados con generadores de Van de Graaff por la facilidad con la que ilustra los fenómenos electrostáticos.Van de Graaff inventó el generador que lleva su nombre en 1931, con el propósito de producir una diferencia de potencial muy alta (del orden de 20 millones de volts) para acelerar partículas cargadas que se hacían chocar contra blancos fijos. Los resultados de las colisiones nos informan de las características de los núcleos del material que constituye el blanco.
El generador del Van de Graaff es un generador de corriente constante, mientas que la batería es un generador de voltaje constante, lo que cambia es la intensidad dependiendo que los aparatos que se conectan.
El generador de Van de Graaff es muy simple, consta de un motor, dos poleas, una correa o cinta y dos peines o terminales hechos de finos hilos de cobre, y una esfera hueca donde se acumula la carga transportada por la cinta.

Enlaces externos
El generador de Van de Graaff (Universidad del País Vasco) (en español)
Reseña del Generador de Van de Graaff (en español)
History of the Van de Graaff Generator (Boston Museum of Science) (en inglés)

Video


Bobina de Tesla, Principios

Introducción

Una bobina de Tesla ( también simplemente: bobina tesla) es un tipo de transformador resonante, llamado así en honor a su inventor, Nikola Tesla. Las bobinas de Tesla están compuestas por una serie de circuitos eléctricos resonantes acoplados. En realidad Nikola Tesla experimentó con una gran variedad de bobinas y configuraciones, así que es difícil describir un modo específico de construcción que satisfaga a aquellos que hablan sobre bobinas de "Tesla". Las "primeras" bobinas y las bobinas "posteriores" varían en configuraciones y montajes. Generalmente las bobinas de Tesla crean descargas eléctricas de largo alcance, lo que las hace muy populares entre los entusiastas del alto voltaje.

Descarga de una bobina de Tesla


Historia

Primeras bobinas
El American Electrician da una descripción de una de las primeras bobinas Tesla, donde un vaso acumulador de cristal de 15 cm por 20 cm es enrollado con entre 60 y 80 vueltas de alambre de cobre No. 18 B & S. Dentro de este se sitúa una bobina primaria consistente en entre 8 y 10 vueltas de cable AWG No. 6 B & S, y el conjunto se sumerge en un vaso que contiene aceite de linaza o aceite mineral.

Bobinas "Tesla" disruptivas
En la primavera de 1891, Tesla ofreció una serie de demostraciones con varias máquinas ante el ‘’American Institute of Electrical Engineers’’ del ‘’Columbia College’’. Continuando las investigaciones iniciales sobre voltaje y frecuencia de William Crookes, Tesla diseñó y construyó una serie de bobinas que produjeron corrientes de alto voltaje y alta frecuencia. Estas primeras bobinas usaban la acción "disruptiva" de un spark gap en su funcionamiento. Dicho montaje puede ser duplicado por una bobina Ruhmkorff, dos condensadores, y una segunda bobina disruptiva, especialmente construida.
La bobina de Ruhmkorff, alimentada a través de una fuente principal de corriente, es conectada a los capacitores en serie por sus dos extremos. Un spark gap se coloca en paralelo a la bobina Ruhmkorff antes de los capacitores. Las puntas de descarga eran usualmente bolas metálicas con diámetros inferiores a los 3 centímetros, aunque Tesla utilizó diferentes elementos para producir las descargas. Los capacitores tenían un diseño especial, siendo pequeños con un gran aislamiento. Estos capacitores consistían en placas móviles en aceite. Cuanto menor eran las placas, mayor era la frecuencia de estas primeras bobinas. Las placas resultaban también útiles para eliminar la elevada autoinductancia de la bobina secundaria, añadiendo capacidad a esta. También se colocaban placas de Mica en el spark gap para establecer un chorro de aire a través del gap. Esto ayudaba a extinguir el arco eléctrico, haciendo la descarga más abrupta. Una ráfaga de aire se usaba también con este objetivo.
Los capacitores se conectan a un circuito primario doble (cada bobina en serie con un capacitor). Estos son parte de la segunda bobina disruptiva construida especialmente. Cada primario tiene veinte vueltas de cable cubierto por caucho No. 16 B & S y están enrollados por separado en tubos de caucho con un grosor no inferior a 0,3 cm. El secundario tiene 300 vueltas de cable magnético cubierto por seda No. 30 B & S, enrollado en un tubo de caucho, y en sus extremos encajado en tubos de cristal o caucho. Los primarios tienen que ser suficientemente largos como para estar holgados al colocar la segunda bobina entre ambos. Los primarios deben cubrir alrededor de 5 cm. del secundario. Debe colocarse una división de caucho duro entre las bobinas primarias. Los extremos de las primarias que no están conectados con los capacitores se dirigirán al spark gap.
En System of Electric Lighting (23 de junio de 1891), Tesla describió esta primera bobina disruptiva. Concebida con el propósito de convertir y suplir energía eléctrica en una forma adaptada a la producción de ciertos nuevos fenómenos eléctricos, que requerían corrientes de mayores frecuencia y potencial. También especificaba un mecanismo descargador y almacenador de energía en la primera parte de un transformador de radiofrecuencia. Esta es la primera aparición de una alimentación de corriente de RF capaz de excitar una antena para emitir potente radiación electromagnética.
Otra de estas primeras bobinas Tesla fue protegida en 1897 por patente, "Electrical Transformer". Este transformador desarrollaba (o convertía) corrientes de alto potencial y constaba de bobinas primaria y secundaria (opcionalmente, uno de los terminales de la secundaria podía estar conectada eléctricamente con la primaria; similarmente a las modernas bobinas de encendido). Esta bobina Tesla tenía la secundaria dentro de y rodeada por las convoluciones de la primaria. Esta bobina Tesla constaba de bobinas primaria y secundaria enrolladas en forma de espiral plana. El aparato estaba también conectado a Tierra cuando la bobina estaba en funcionamiento.

Bobinas posteriores
Tesla, en la patente System of Transmission of Electrical Energy y Apparatus for Transmission of Electrical Energy, describió nuevas y útiles combinaciones empleadas en bobinas transformadoras. Bobinas transmisoras o conductoras preparadas y excitadas para provocar corrientes o oscilaciones que se propagaran por conducción a través del medio natural de un punto a otro punto remoto, y bobinas receptoras de las señales transmitidas. Estas bobinas permitían producir corrientes de muy alto potencial. Más tarde conseguiría, Method of Signaling, y , System of Signaling, para bobinas con una elevada capacitancia transmisiva con un electrodo a Tierra.
Algunas de estas bobinas posteriores fueron considerablemente más grandes, y operadas a niveles de potencia mucho mayores. Cuando Tesla patentó un dispositivo en (Apparatus for Transmitting Electrical Energy), llamó al dispositivo un transformador resonantes autoregenerativo de alto voltaje con núcleo de aire que genera alto voltaje a alta frecuencia. Sin embargo esta frase ya no se usa. Los dispositivos posteriores fueron en ocasiones alimentados desde transformadores de alto voltaje, usando bancos de capacitores de cristal de botella inmersos en aceite para reducir las pérdidas por descargas de corona, y usaban spark gaps rotativos para poder tratar los niveles de alta potencia. Las bobinas Tesla conseguían una gran ganancia en voltaje acoplando dos circuitos LC resonantes, usando transformadores con núcleo de aire. A diferencia de las transformadores convencionales, cuya ganancia está limitada a la razón entre los números de vueltas en los arrollamientos, la ganancia en voltaje de una bobina Tesla es proporcional a la raíz cuadrada de la razón de las inductancias secundaria y primaria.
Estas bobinas posteriores son los dispositivos que construyen usualmente los aficionados. Son transformadores resonantes con núcleo de aire que genera muy altos voltajes en radio frecuencias. La bobina alcanza una gran ganancia transfiriendo energía de un circuito resonante (circuito primario) a otro (secundario) durante un número de ciclos.
Aunque las bobinas Tesla modernas están diseñadas usualmente para generar largas chispas, los sistemas originales de Tesla fueron diseñados para la comunicación sin hilos, de tal manera que él usaba superficies con gran radio de curvatura para prevenir las descargas de corona y las pérdidas por streamers.
La intensidad de la ganancia en voltaje del circuito es proporcional a la cantidad de carga desplazada, que es determinada por el producto de la capacitancia del circuito, el voltaje (que Tesla llamaba “presión”) y la frecuencia de las corrientes empleadas. Tesla también empleó varias versiones de su bobina en experimentos con fluorescencia, rayos x, potencia sin cables para transmisión de energía eléctrica, electroterapia, y corrientes telúricas en conjunto con electricidad atmosférica.
Las bobinas posteriores constan de un circuito primario, el cual es un circuito LC (inductancia-capacitor) en serie compuesto de un capacitor de alto voltaje, un spark gap, y una bobina primaria; y un circuito secundario, que es un circuito resonante en serie compuesto por la bobina secundaria y el toroide. En los planos originales de Tesla, el circuito LC secundario está compuesto de una bobina secundaria cargada que es colocada en serie con una gran bobina helicoidal. La bobina helicoidal estaba entonces conectada al toroide. La mayor parte de las bobinas modernas usan sólo una única bobina secundaria. El toroide constituye una de las terminales de un capacitor, siendo la otra terminal la Tierra. El circuito LC primario es “ajustado” de tal forma que resonará a la misma frecuencia del circuito secundario. Las bobinas primaria y secundaria están débilmente acopladas magnéticamente, creando un transformador con núcleo de aire resonante. Sin embargo, a diferencia de un transformador convencional, que puede acoplar el 97%+ de los campos magnéticos entre los arrollamientos, estos están acoplados, compartiendo sólo el 10-20% de sus respectivos campos magnéticos. La mayoría de los transformadores aislados por aceite necesitan potentes aislantes en sus conexiones para prevenir descargas en el aire. Posteriores versiones de la bobina de Tesla distribuyen su campo eléctrico sobre una larga distancia para prevenir elevado stress eléctrico en el primer lugar, permitiendo así operar libremente en aire.
Los terminales consisten en una estructura metálica con la forma de un toroide, cubierta con una placa metálica circular de curvatura suave (formando una superficie conductora muy grande). Tesla usó en su aparato más grande este tipo de elemento dentro de una cúpula. El terminal superior tiene relativa poca capacitancia, cargado al mayor voltaje que es posible. La superficie exterior del conductor elevado es donde principalmente se acumula la carga eléctrica. Posee un gran radio de curvatura, o está compuesto por elementos separados los cuales, respecto a su propio radio de curvatura, están colocados cercanos entre sí de tal forma que la superficie exterior resultante tiene un gran radio.
Este diseño permite al terminal soportar muy altos voltajes sin generar coronas o chispas. Tesla durante su proceso de aplicación de patentes describió variados terminales resonadores para la parte superior de sus bobinas posteriores La mayoría de las bobinas Tesla modernas usan toroides simples, generalmente fabricados de metal fundido o de aluminio flexible, para controlar el intenso campo eléctrico cerca de la parte superior de la secundaria y lanzar las chispas directamente fuera, lejos de los arrollamientos primario y secundario.
Algunos de los trabajos de Tesla involucran un transformador de alta frecuencia, de núcleo de aire, fuertemente acoplado, cuya salida alimenta una bobina resonante, algunas veces llamada “bobina extra”, o simplemente una “secundaria superior”. El principio es que la energía se acumula en la bobina superior resonante, y el papel del transformador secundario es llevado a cabo por la secundaria “inferior”; Los papeles no están compartidos por un único secundario. Sistemas modernos de tres bobinas generalmente o colocan la secundaria superior a cierta distancia del transformador, o lo hacen de un diámetro considerablemente menor; no se busca acoplamiento magnético con la secundaria superior, porque cada secundaria está diseñada específicamente para su papel.
En detalle, este circuito Tesla consiste en una bobina en relación inductiva cercana con un primario, y una de las terminaciones conectada a una placa a tierra, mientras que la otra está dirigida a través de una bobina de auto-inducción separada (cuya conexión debe ser hecha siempre a, o cerca de, el centro geométrico de la bobina, para asegurar una distribución simétrica de la corriente), y de un cilindro metálico que transporta la corriente al terminal. La bobina primaria puede ser excitada por cualquier fuente de corriente de alta frecuencia deseada. El requerimiento importante es que los lados primario y secundario deben estar ajustados a la misma frecuencia resonante para permitir transferencias eficientes de energía entre los circuitos resonantes primario y secundario. Originalmente, un alternador de alta frecuencia o un capacitor de descarga eran usados para excitar la bobina primaria. Bobinas Tesla modernas pueden usar tubos de vacío para excitar el primario y generar corriente de alta frecuencia.
En el diseño de Tesla, el conductor a la terminal tiene la forma de un cilindro de suave superficie con radio mucho mayor que el de las placas metálicas esféricas, y que se ensancha en la parte más baja en un gancho (que está encajado para evitar pérdidas por eddy currents (corrientes de Foucault) y por seguridad). La bobina secundaria está enrollada en un tambor de material aislante, con sus vueltas muy cercanas entre sí. Cuando el efecto de los pequeños radios de curvatura del cable es superado, la bobina secundaria inferior se comporta como un conductor de gran radio de curvatura, correspondiendo al del tambor. El final inferior de la bobina secundaria superior, si se desea, puede ser extendido hasta el terminal, hasta algún lugar por debajo de la vuelta superior de la bobina primaria.

Uso y producción


Esquema típico de una bobina Tesla. Este circuito de ejemplo está diseñado para ser alimentado con corrientes alternas. Aquí el spark gap corta la alta frecuencia a través del primer transformador. Una inductancia, no mostrada aquí, protege el transformador.

Configuración alternativa de una bobina Tesla. Este también alimentado por corrientes alternas. Sin embargo, aquí el transformador de la alimentación AC debe ser capaz de tratar altos voltajes a altas frecuencias

POTENCIA
Una bobina Tesla grande de diseño actual puede operar con niveles de potencia con picos muy altos, hasta muchos megavatios (un millón de vatios). Debe por tanto ser ajustada y operada cuidadosamente, no sólo por eficiencia y economía, sino también por seguridad. Si, debido a un ajuste inapropiado, el punto de máximo voltaje ocurre por debajo de la terminal, a lo largo de la bobina secundaria, una chispa de descarga puede dañar o destruir el cable de la bobina, sus soportes o incluso objetos cercanos.
Tesla experimentó con estas, y muchos otras, configuraciones de circuitos (ver dcha). El arrollamiento primario, el spark gap y el tanque capacitor están conectados en serie. En cada circuito, el transformador de la alimentación AC carga el tanque capacitor hasta que su voltaje es suficiente para producir la ruptura del spark gap. El gap se dispara, permitiendo al tanque capacitor cargado descargarse en la bobina primaria. Una vez el gap se dispara, el comportamiento eléctrico de cada circuito es idéntico. Los experimentos han mostrado que ninguno de los circuitos ofrece ninguna ventaja de rendimiento sobre el otro.
Sin embargo, en el circuito típico (arriba), el cortocircuitar el spark gap previene que las oscilaciones de alta frecuencia 'vuelvan' al transformador. En el circuito alterno, oscilaciones de alta amplitud y alta frecuencia que aparecen a lo largo del capacitor también son aplicadas a la bobina del transformador. Esto puede inducir descargas de corona entre los giros que debiliten y eventualmente destruyan el aislamiento del transformador. Constructores experimentados de bobinas Tesla utilizan casi exclusivamente el circuito superior, generalmente añadiendo filtros pasa baja (redes de resistores y capacitores) entre el transformador y el spark gap. Esto es especialmente importante cuando se usan transformadores con oscilaciones de alto voltaje frágiles, como transformadores de luces de Neon (NST en sus siglas en inglés). Independientemente de la configuración que se use, el transformador HV debe ser del tipo que auto-limita su corriente secundaria por medio de inductancias de fuga interna. Un transformador de alto voltaje normal (con baja inductancia de fuga) debe utilizar un limitador externo (a veces llamado ballast) para limitar la corriente. Los NST están diseñados para tener inductancia de fuga alta, para limitar sus cortocircuitos a niveles seguros.

Seguridad y precauciones

En el ajuste de la bobina la frecuencia de resonancia de la bobina primaria se ajusta al mismo valor de la bobina secundaria. Es recomendable para comenzar usar oscilaciones de baja potencia, y a partir de estas incrementar la potencia hasta el momento en el que el aparato esté bajo control. Mientras se ajuste, se suele añadir una pequeña proyección (llamada "breakout bump") al terminal superior para estimular descargas de corona y de chispas (también llamadas "streamers") en el aire circundante. La bobina puede entonces ajustarse para conseguir las descargas más largas a una cierta potencia dada, correspondiendo a la coincidencia de frecuencias entre la bobina primaria y la secundaria. La "carga" capacitiva de estos streamers tiende a bajar la frecuencia resonante de una bobina Tesla funcionando a potencia máxima. Por distintas razones técnicas, resulta efectivo elegir a los terminales superiores de la bobina con forma toroidal.
Ya que las bobina Tesla pueden producir corrientes o descargas de muy alta frecuencia y voltaje, son útiles para diferentes propósitos entre los que se incluyen demostraciones prácticas en clases, efectos especiales para teatro y cine, y pruebas de seguridad de diferentes tecnologías. En su funcionamiento más común, se producirán largas descargas de alto voltaje en todas direcciones alrededor del toroide, que resultan muy espectaculares.

Descargas aéreas
Al generar las descargas, se produce una transferencia de energía eléctrica entre la bobina secundaria y el toroide y el aire circundante, transferencia que se produce en forma de carga eléctrica, calor, luz y sonido. Las corrientes eléctricas que fluyen a través de estas descargas se deben a la rápida oscilación de cargas desde el terminal superior al aire circundante. El proceso es similar a cargar o descargar un capacitor. La corriente que surge de aumentar la carga en un capacitor se denomina corriente de desplazamiento. Al producirse estas corrientes de desplazamiento, se forman pulsos de carga eléctrica que se transfieren rápidamente entre el toroide de alto voltaje y las regiones de aire cercanas, llamadas regiones de carga espacial. Estas regiones de carga juegan un papel fundamental en la aparición y situación de las descargas de las bobinas Tesla.
Cuando el spark gap se dispara, el capacitor cargado se descarga en el primer arrollamiento, lo que hace que el circuito primario empiece a oscilar. La corriente oscilante crea un campo magnético que se acopla con el segundo arrolamiento, transfiriendo energía a la parte secundaria del transformador y produciendo que este oscile con la capacitancia toroidal. La transferencia de energía ocurre durante varios ciclos, y la mayor parte de la energía que originalmente se encontraba en la parte primaria, pasa a la secundaria. Cuanto mayor es el acoplamiento magnético entre los arrollamientos, menor será el tiempo requerido para completar la transferencia de energía. Según la energía crece en el circuito oscilante secundario, la amplitud del voltaje RF del toroide crece rápidamente, y en el aire circundante al toroide se produce una ruptura del dieléctrico, formando una descarga de corona.
Según se sigue incrementando la energía (y el voltaje exterior) de la segunda bobina, se producen pulsos mayores de corriente de desplazamiento que ionizan y calientan el aire. Esto forma una “raiz” de plasma caliente muy conductora, llamada chispa directora que se proyecta hacia el exterior del toroide. El plasma en esta “conductora” está considerablemente más caliente que una descarga de corona, y es considerablemente más conductora. De hecho, tiene propiedades similares a un arco eléctrico. La conductora se bifurca en miles de descargas mucho más finas, similares a cabellos, llamadas streamers.
Estos streamers son como una “niebla” azulada al final de las conductoras más luminosas, y son estos los que transfieren la carga entre el toroide y las regiones espaciales de carga circundantes. Las corrientes de desplazamiento de incontables streamers alimentan a la conductora, ayudando a mantenerla caliente y eléctricamente conductora.
En una bobina Tesla con spark gap, el proceso de transferencia de energía entre los circuitos primarios y secundarios ocurre repetidamente a unas tasas típicas de transferencia de 50/500 veces por segundo, y los canales conductores previamente formados no tienen oportunidad de enfriarse totalmente entre pulsos. De esta forma, en pulsos sucesivos, las nuevas descargas pueden construirse en los rastros calientes dejados por sus predecesoras. Esto produce un crecimiento consecutivo de las conductoras de un pulso al siguiente, alargando la descarga en cada pulso sucesivo.
La repetición de los pulsos produce que las descargas crezcan hasta que la energía media que está disponible en la bobina Tesla durante cada pulso se equilibre con la energía media perdida en las descargas (mayormente por calor). En este punto se alcanza el equilibrio dinámico, y las descargas alcanzan su máxima longitud para esa potencia exterior de la bobina. Esta única combinación de un alto voltaje creciente de radiofrecuencia y una repetición de pulsos parece ajustarse de forma ideal para crear descargas largas y bifurcadas que son considerablemente mayores que las que se podrían esperar simplemente considerando el voltaje exterior. Más de 100 años después del uso de las primeras bobinas Tesla, hay muchos aspectos de las descargas y de los procesos de transferencia de energía que todavía no se comprenden en su totalidad.

Recepción
La bobina secundaria y su capacitor se pueden usar en modo receptivo. Los parámetros de una bobina Tesla transmisora son aplicables idénticamente para ser un receptor, debido a la reciprodicidad electromagnética. La impedancia, sin embargo, no se aplica de manera obvia. La impedancia en la carga eléctrica externa es más crítica, y para un receptor, este es el punto de utilización (como en un motor de inducción) más que en el nodo receptor.
Las bobinas Tesla también se pueden construir para utilizar la electricidad atmosférica, aunque generalmente no se usan con estos propósitos. Tesla sugirió que una variación de la bobina Tesla podría utilizar el efecto “phantom loop” para formar un circuito capaz de inducir energía del campo magnético de la Tierra y otras fuentes de energía radiante. Este concepto es parte de su transmisor de energía sin cables.
Mientras que Tesla demostró la transmisión de potencia eléctrica sin cables de un transmisor a un receptor, señalamos, con respecto a las especulaciones de Tesla relacionadas con el aprovechamiento de fenómenos naturales para obtener potencia eléctrica, que este artículo no cita ninguna demostración pública de este tipo de tecnología, por ningún individuo, grupo, o entidad de algún tipo.

El mito del efecto pelicular (skin effect)
Los peligros de las corrientes de alta frecuencia se perciben a veces como menores que los producidos a bajas frecuencias. Esto se suele interpretar, erróneamente, como debido al efecto pelicular, un efecto que tiende a inhibir la corriente alterna que fluye dentro de un medio conductor. Aunque el efecto pelicular es aplicable dentro de conductores eléctricos (por ejemplo metales), la “profundidad de penetración” de la carne humana a las frecuencias típicas de una bobina Tesla es del orden de los 100 cm o más. Esto significa que corrientes de alta frecuencia seguirán fluyendo preferentemente a través de partes mejor conductoras del cuerpo como el sistema circulatorio y el nervioso. En realidad, el sistema nervioso de un ser humano no siente directamente el flujo de corrientes eléctricas potencialmente peligrosas por encima de 15/20 kHz; para que los nervios sean activados, un número significativo de iones deben cruzar su membrana antes de que la corriente (y por lo tanto el voltaje) se revierta. Debido a que el cuerpo no provee una señal de shock, los inexpertos pueden tocar los streamers exteriores de una pequeña bobina Tesla sin sentir dolorosos shocks. Sin embargo, hay pruebas entre experimentadores de bobinas Tesla de haber sufrido daño temporal en los tejidos, el cual puede ser observado como dolor de músculos, articulaciones u hormigueo durante horas e incluso días después. Se cree que esto puede deberse a los efectos dañinos del flujo de corrientes internas, y es especialmente común con bobinas Tesla de onda continua, de estado sólido o de vacío.
Grandes bobinas Tesla y amplificadores pueden producir niveles peligrosos de corriente de alta frecuencia, y también altos voltajes (250.000/500.000 voltios o más). Debido a sus altos voltajes se pueden producir descargas potencialmente letales desde los terminales superiores. Doblando el potencial exterior se cuadruplica la energía electrostática almacenada en un terminal de cierta capacitancia dada. Si un experimentador se sitúa accidentalmente en el camino de una descarga de alto voltaje a tierra, el shock eléctrico puede causar espasmos involuntarios y puede inducir fibrilación ventricular y otros problemas que puedan matarnos. Incluso bobinas de baja potencia de vacío o de estado sólido pueden producir corriente de radio frecuencia que son capaces de causar daños temporales en tejidos internos, nervios o articulaciones a través de calentamiento Joule. Además un arco eléctrico puede carbonizar piel, produciendo dolorosas y peligrosas quemaduras que pueden alcanzar el hueso, y que pueden durar meses hasta su curación. Debido a estos riesgos, los experimentadores con conocimientos evitan el contacto con los streamers de todos excepto los sistemas más pequeños. Los profesionales suelen usar otros medios de protección como cajas de Faraday, o trajes de cota de malla para evitar que las corrientes penetren en el cuerpo. Una amenaza que no se suele tener en cuenta es que un arco de alta frecuencia puede golpear el primario, pudiendo producirse también descargas mortales.

Casos y dispositivos
Los laboratorios Tesla de Colorado Springs poseían una de las bobinas Tesla más grande jamás construida, conocida como el “transmisor amplificador” ("Magnifying Transmitter"). Este es algo diferente de una bobina Tesla clásica de dos bobinas. Un amplificador usa un sistema de dos bobinas para excitar la base de una tercera bobina (resonador) que está situada a cierta distancia del primero. Los principios operativos de ambos sistemas son similares.
La bobina Tesla más grande jamás construida fue hecha por Greg Leyh. Es una unidad de 130.000 vatios, parte de una escultura de 12 m. de alto. El propietario es Alan Gibbs y actualmente reside en un parque escultural privado en Kakanui Point cerca de Auckland (Nueva Zelanda).
La bobina Tesla es un predecesor primitivo (junto a la bobina de inducción) de un dispositivo más moderno llamado “transformador flyback”, que provee del voltaje necesario para alimentar los tubos de rayos catódicos usados en algunas televisiones y monitores de ordenador. La bobina de descarga disruptiva se mantiene como uso común como “bobina de ignición” en el sistema de ignición de un motor de combustión interna. Sin embargo, estos dos dispositivos no utilizan la resonancia para acumular energía, característica distintiva de una bobina Tesla. Una versión moderna de baja potencia de la bobina se usa para alimentar la iluminación de esculturas y dispositivos similares.

Popularidad
Las bobinas Tesla son dispositivos muy populares entre ciertos ingenieros eléctricos y entusiastas de la electrónica. A alguien que construye una bobina de Tesla como hobby se le llama “bobinador Tesla” o simplemente “bobinador”. Hay incluso convenciones donde la gente acude con sus bobinas caseras y otros dispositivos de interés. Las bobinas Tesla de baja energía se usan también como fuentes de alto voltaje para la fotografía Kirlian. También se usan como elementos educacionales.

En la ficción
Las bobinas Tesla aparecen como armas en muchos juegos de ordenador, generalmente disparando pulsos de electricidad a los enemigos. También aparecen otras armas con la palabra Tesla en sus nombres. Ejemplos de estos juegos son: Blood, Command & Conquer: Red Alert, Destroy All Humans!, Tomb Raider: Legend, Arcanum: Of Steamworks and Magick Obscura, Return to Castle Wolfenstein, Tremulous (a Quake3-mod), World of Warcraft, Dystopia (a Half-Life 2-mod), Ratchet and Clank, BloodRayne 2, and Crimson Skies.
En el juego "Sims: Bustin' Out", para la Gamecube de Nintendo y la GBA, es posible comprar una bobina Tesla. Cuando los Sims la usan, les da experiencia mecánica.
En la película de Jim Jarmusch Coffee and Cigarettes (2003), una de las secciones en las que está dividida la película se titula "Jack shows Meg his Tesla coil". En ella actuan Jack y Meg White, músicos del grupo "The White Stripes". En la escena, los dos aparecen tomando un café, y Jack le explica a Meg el trabajo de Tesla, y le muestra una bobina Tesla que ha construido.